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A rapidly convergent block-iterative scheme for the computation of a few of the lowest 
eigenvalues and eigenvectors of a large dense real symmetric matrix is proposed. The method 
is especially applicable to matrix eigenvalue problems that arise from the discretization of self- 
adjoint partial differential equations. One such application to certain symmetric matrices 
that arise in solid-state band structure calculations is considered in detail. The most time- 
consuming parts of the present algorithm are a matrix multiplication and a Gauss-Siedel 
relaxation step which are performed on each iteration. These two parts can, however, be very 
efftciently implemented on a vector or parallel processing computer. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we are interested in obtaining the lowest few solutions of the eigen- 
value problem 

Ax=lx (1) 

where A is an n x n square symmetric matrix. We are interested in this problem in 
the context of the solution of a linear partial differential equation using a Fourier 
expansion. (In our solid-state physics applications it is the quantum-mechanical 
Schriidinger equation in three dimensions.) Thus, x represents the unknown 
amplitudes in the expansion of the solution (in our case, the wavefunction) in a 
Fourier basis set. Typically the desired lowest solutions are composed primarily of 
low Fourier components. Thus, if the basis vectors (“plane waves” in three dimen- 
sions) are ordered by magnitude, the resulting matrix A is dense and is dominated 
by diagonal elements Akk for large k, and a leading submatrix of A can be solved 
to obtain a first approximation to the desired solutions. The method proposed here 
is more generally intended for any matrices of this type, i.e., dense, diagonally domi- 
nant matrices that arise in applications where one can choose a basis in which the 
first few basis vectors almost span the desired solutions. In our case, a sufhciently 
accurate approximation to the wavefunction requires the dimension of A to be on 
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the order of 2000, of which typically the 100 lowest eigenvalue-eigenvector pairs are 
required. Other discretization schemes, such as finite differences, lead to a sparse 
matrix, which, however, must be much larger to obtain the same accuracy of 
discretization. 

The Eispack algorithm (Garbow et al. [ 11) for computing the eigenspectrum of 
(1) uses a two step procedure. In the first step, a series of Householder similarity 
transformations reduces A to a tridiagonal symmetric matrix. Following this, the 
QL algorithm is used on the resulting tridiagonal matrix to determine the eigen- 
values and eigenvectors. This procedure, which is implemented in the Fortran 
subroutines TREDZ and TQL2, is not very useful when the matrix A is large. One 
difficulty is the large O(n3) operation count required by these algorithms in order 
to obtain the eigenvalues and eigenvectors even if, as in our application, only a 
fraction of the eigenvalues and eigenvectors are desired. Another difficulty is the 
O(n’) storage requirement, since efficient processing using the Eispack routines 
(particularly TRED2) requires that the entire A matrix be held in fast random 
access memory. 

Parlett [2] has reviewed many of the direct iterative schemes that are applicable 
to the eigenvalue problem (1). Of these, inverse iteration (with shift) provides a 
rapid linearly convergent procedure for computing the eigenvector corresponding to 
the eigenvalue that is closest to the chosen shift. However, the factorization of a 
dense matrix that is required in this algorithm has an O(n3) operation count and 
this diminishes its utility for large matrices. On the other hand, efficient out-of-core 
algorithms exist for the matrix factorization. These algorithms are especially designed 
to minimise data transfer or paging when the matrix A must be stored on a secondary 
memory storage device such as disk. Because of this, the inverse iteration procedure 
is preferable to the Eispack procedures for large matrices, where the cost of I/O can 
dominate the actual computational cost. In addition, if the matrix A is sparse or 
banded, then a number of specialized matrix factorization techniques with reduced 
operation counts can also be used. 

Other iterative schemes, some of which are discussed below, have also been 
proposed for the computation of a portion of the eigenspectrum of a symmetric 
matrix. These schemes are designed to have a lower O(n*) operation count than the 
usual inverse iteration method while retaining the fast rate of convergence of the 
latter. These fast convergence characteristics derive from the use of the minimax 
property of the Rayleigh quotient 

(2) 

to recompute the shifts and basis vectors variationally in each iteration. In par- 
ticular, given a subspace &“, 1 <n, the Rayleigh-Ritz principle applied to (2), can be 
used to determine the most optimal approximation to the I lowest eigenvalues and 
eigenvectors from b’. These estimates are obtained by exactly solving the 
/-dimensional eigenvalue problem that results form projecting the matrix A into the 
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subspace 8’. The accuracy of the results can be refined in either of two ways. The 
first way is to increase the dimension of the approximating subspace until the 
desired convergence is obtained. The second way is to keep the subspace dimension 
fixed but to compute iteratively an improved approximating subspace, i.e., one that 
more effectively spans the eigenspace of the desired eigenvalues. These two 
strategies can be combined to accelerate the convergence. Selective convergence on 
the eigenspace of higher eigenvalues of A is also possible with the Rayleigh-Ritz 
procedure by using an approximating subspace that is orthogonal to the 
eigenspaces of lower eigenvalues (assuming that the latter have somehow been 
accurately determined). 

The most straightforward of the O(n2) iterative schemes is subspace iteration 
(Jennings, [3]), which is used to compute the eigenvectors corresponding to the 
dominant eigenvalues (in absolute magnitude) of A. In this method, a subspace of 
dimension 1, where I is larger than the number of desired eigenvectors, is chosen to 
initiate the computation. At each iteration, the basis vectors of this subspace are 
premultiplied by A to yield an I dimensional approximating 8’. This premultiplica- 
tion has the effect of amplifying the components of the dominant eigenvectors in the 
original basis-much as in the usual Power method (Wilkinson [4]). The matrix 
A is diagonalized after projecting into 6’ and the resulting eigenvalues and back- 
transformed eigenvectors are tested for convergence. If convergence is achieved, 
then the backtransformed eigenvectors provide an updated basis and the cycle 
starting with the premultiplication by A is repeated. The most computationally 
intensive step is the matrix multiplication which has an operation count of O(fn2). 
This step, however, can be efficiently implemented on a computer with vector or 
parallel processing capabilities (Natarajan, [ 51). 

Lanczos [6] has proposed another O(n2) scheme, in which at the ith iteration 
the approximating subspace consists of the Krylov subspace of A of order i. The 
choice of an orthogonal basis set for this subspace leads to the useful property 
that the intermediate matrices to be diagonalized are tridiagonal; hence, this 
diagonalization can be very efficiently carried out using Sturm sequence techniques 
(such as implemented in the Eispack routine, TSTURM). However, the Lanczos 
algorithm is known to be susceptible to roundoff error growth. Nevertheless, 
modifications to the basic algorithm, such as intermediate selective reorthogonaliza- 
tion of the Krylov subspace basis vectors to the already converged eigenvectors 
(Scott, [7]) are quite effective in overcoming the roundoff problem. A block ver- 
sion of the original Lanczos method is required to treat the case when the complete 
eigenspaces of multiple eigenvalues need to be determined. In this case, the resulting 
intermediate matrices are block-tridiagonal rather that tridiagonal. Further details 
on the Lanczos method may be found in Cullum and Willoughby [S]. 

Davidson [9] has proposed an algorithm that provides a faster convergence than 
the Lanczos method especially when the desired eigenvalues are closely spaced. 
Ideally, in the case of closely spaced eigenvalues, an inverse iteration with shift 
would be used to provide better convergence than the methods that rely on a 
premultiplication with A. However, as discussed earlier, the complete inverse 
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iteration step is prohibitively expensive for such large matrices. In the Davidson 
procedure therefore, the exact matrix factorization is replaced by one step of a 
Jacobi relaxation. For diagonally dominant matrices of the kind which arise in the 
current application, this enables the components of the unwanted eigenvectors to be 
damped out from the approximating subspace basis in a relatively inexpensive way. 

A generalized block version of the Davidson algorithm has been developed by 
Liu [lo] for simultaneously determining the k lowest eigenvalues and eigenvectors 
of A. The details of this algorithm are as follows. A subspace b’, of dimension l> k, 
whose basis consists of the orthonormal vectors {b:“} (j= 1, . . . . I), is chosen to 
initiate the computation. These basis vectors define an n x 1 orthogonal matrix Q”’ 
in the form 

Q(” = [b\“, b$l’, . . . . bj”]. (3) 

The matrix A is formed by projecting A into this subspace as follows 

A= Q”” AQ’” 

and the eigenvalues 1;” (j= 1, . . . . f) and corresponding eigenvectors of A are deter- 
mined. These eigenvalues and the backtransformed eigenvectors XI” are examined 
for convergence by checking the residuals q,;” of the lowest k desired eigenpairs 

q;l’= (A -$“l) xj”. (5) 

If convergence has not occurred, the inverse iteration equations are formulated but 
instead of an exact solution, a single step of a Jacobi relaxation is carried out to 
yield a set of updates in the form 

(6) 

The set of update vectors are orthonormalized to each other and to the original 
basis of 8’ to yield the orthonormal set {b,!“} (j= 1, . . . . 1+ k). This set when added 
to the original basis of 8’ leads to a basis for a new subspace CC’+ k. This basis also 
defines a new n x (I + k) orthogonal projection matrix into this subspace 

Q”’ = [b’,“, . . . . bj”; bt2’, . . . . bi2’] (7) 

which is used in the next iteration. We note that this procedure generates a 
sequence of subspaces of dimension 1, 1 + k, I+ 2k, . . . in which the eigenvalue 
problem for A must be solved exactly. In general k << I < n so that the time con- 
sumed in this portion of the calculation, although 0(j3), is small relative to the 
matrix multiplication required to compute the right-hand side in (5). However, if 
the desired convergence is not rapidly attained, the dimension of the approximating 
subspace may grow to become very large. When this happens, the calculation is 
usually stopped and restarted using only the basis computed from the most recent 
iteration. Modified versions of the Davidson and Davidson-Liu methods have been 
discussed by Davidson [ 111, Kosugi [ 121, and Morgan and Scott [13]. 
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Bendt and Zunger [14] (see also Wood and Zunger [15]) have presented an 
algorithm with some modifications to the usual Davidson method (as presented 
above, with k = 1). They suggest the use of a different expansion basis for x in (1) 
that consists of vectors that are good approximations to the eigenvectors of A. 
These vectors can be obtained for example by diagonalizing a leading submatrix of 
A. The matrix A expressed in this basis is more likely to be diagonally dominant 
and this leads to a better justification for using a Jacobi relaxation procedure. 
The use of such a nonorthogonal basis set results in a generalized eigenvalue 
problem to be solved on each iteration. In addition, they suggest the use of an 
approximating subspace whose basis consists of only the initial guess to the desired 
eigenvector and the set of updates computed on each iteration. This leads to faster 
execution for the diagonalization step since the order of the problem on the ith 
iteration is only i + 1, as opposed to i+ I in the usual single-vector Davidson 
method. This modification is especially useful when many iterations are required for 
convergence. In this case, the order of the matrix to be diagonalized in Eq. (4) is 
eventually so large that the time taken for this step is comparable to the dominant 
matrix multiplication step. However, the method does not incorporate some of the 
attractive features of the block Davidson-Liu procedure, especially the ability to 
solve for complete eigenspaces of degenerate eigenvectors. 

2. PRESENT SCHEME 

The present work is primarily directed towards obtaining an algorithm for matrix 
eigenvalue problems that arise from the discretization of self-adjoint partial differen- 
tial equations. In such problems, it is often useful to start with a coarse mesh 
discretization; for example, one can diagonalize in the space of low Fourier com- 
ponents using standard Eispack routines, to provide initial guesses to the desired 
eigenvalues and eigenvectors. The accuracy of the coarse mesh estimates can then 
be improved by making use of one of the Rayleigh quotient-based iterative techni- 
ques, using the matrix obtained from the line mesh discretization (e.g., the full set 
of Fourier basis vectors). We propose a modified Rayleigh quotient-based techni- 
que which is particularly suited to such problems, and which has the advantages of 
being simple yet robust and efficient. 

The changes that are made to the Davidson-Liu algorithm are as follows. First, 
a Gauss-Seidel update is used instead of the Jacobi update on each iteration, as 
suggested by Morgan and Scott [ 131 ( see also Nex, [ 161). That is, instead of using 
(6) on the ith iteration, we solve the lower triangular set of equations 

(A, -A(l)q dx(i) = -q!i) 
J J J ’ (8) 

where 

A AkJ if k>j 
Lk,j = 0 otherwise. 
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Tests (see Section 4) show that the use of the Gauss-Seidel update provides a faster 
convergence. The Jacobi procedure has the advantage of an 0(n) operation count 
as well as lower I/O costs if the diagonal entries of A can be stored in core memory. 
However, the ostensibly greater Q(n’) operation count and I/O requirements of the 
Gauss-Seidel procedure can be disposed of by effectively combining the calculations 
in (9) with the matrix multiplication step (5) (Froyen, [17]). Note that further 
improvements involving retention of a full leading block of A in (8) are possible 
(Nex, [ 161) but have not been implemented here. 

Second, we modify the form of the approximating subspace as follows. On each 
iteration, the approximating subspace &*‘+ m is that spanned by: (i) the 1 trial 
vectors from the previous iteration; (ii) the 1 Gauss-Seidel updates; and (iii) the 
first m unit vectors. Clearly, any scheme that retains only partial information from 
the previous iterates, like the present one, cannot be more effective than a scheme 
that retains information from all previous iterates (witness the improved 
convergence properties of the Lanczos method in contrast to the power method, 
Cullum and Willoughby, [8]). However, in the present case this deficiency is 
ameliorated by the inclusion of the unit vectors, (iii), which add variational 
freedom. In fact, they correspond to a restriction of the matrix A in (1) to a coarse 
or truncated basis set expansion; hence, these vectors are expected to have a large 
projection on the eigenspace of the lower eigenvalues. Thus it is particularly 
worthwhile to determine these leading (low-Fourier) components exactly on each 
iteration, as done here. 

The resulting projection matrix, on the ith iteration, is 

K = [e,, . . . . e,; by- I), . . . . bj’- ‘); by’, . . . . bj’) J, (10) 

where e, denotes the usualjth unit vector. Note that the matrix K, unlike Q in (3), 
is not orthogonal. The projection of A into this subspace transforms (1) into a 
(21+ m)-dimensional generalized eigenvalue problem 

Ay = My, (11) 

where 

A = K’AK, B = K=K, x=Ky. (12) 

One advantage of the present approach over the Davidson-Liu approach is that the 
generalized eigenvalue problem that must be solved exactly on each iteration is of 
constant size (i.e., 21+ m). This feature simplifies programming considerably, 

3. COMPUTATIONAL DETAILS 

The present algorithm has been implemented in the form of a Fortran subroutine 
ITEIG, whose details we summarize below. To begin with, we need initial guesses 

581,‘82/1-15 
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for the lowest 1 eigenvalues and corresponding eigenvectors. These may be provided 
by the user; otherwise an option is provided to have them generated within the 
program by using the usual Eispack procedures to diagonalize an appropriate 
leading submatrix of A. We take these initial guesses in the form 

(0) (A, ) x’,“‘), (A’,“‘, XiO’,, . . . . (A{“‘, xj”‘). (13) 

On the first iteration, we compute 

#’ = A XjO) 
J 

for j= 1, . . . . I (14) 

and then execute the following loop for k = 0, 1, . . . until convergence: 

(i) Calculate the residuals 

(p = -ZJk) + $k)Xjk) for j = 1, . . . . 1 (15) 

and check the norms of these residuals for convergence in the desired lowest eigen- 
pairs. The loop is terminated upon detecting convergence. 

(ii) Calculate the updates to the vectors in the basis set by solving the lower 
triangular system 

(A, -y~)&p=p for j = 1, . . . . 1. (16) 

(iii) Premultiply the updates by the matrix A to obtain 

ijz!k’= A JX!k’ 
J I 

for j = 1, . . . . 1. (17) 

(iv) Form the entries of the matrices A and iJ in (12), with 

K= [e,, . . . . e,; x’f), . . . . xj“‘; 6x’,“‘, . . . . Gxjk)] (18) 

and solve the generalized eigenvalue problem (11) using the relevant Eispack 
routines to obtain the solutions (Xi”‘, yjk’). For use with the present program, we 
have rewritten and vectorized the original Eispack routines. Details of these 
modifications along with relative performance measurements can be found in 
Natarajan [5]. 

(v) Update the estimates for the I lowest eigenvalues and corresponding 
eigenvectors of A by back-transforming the solutions obtained in (iv) above: 

p+L~yd, 
J 

X(k+ 1) = Kyjk’ 
I for j= 1, . . . . 1. (19) 

The vectors ztk + ‘) required to compute the residuals in (i) during the next iteration 
can also be obtained at this stage by performing the back-transformation 

z(,k+l)=AX~+l)=AKyjk) 
J 

for j= 1, . . . . I, (20) 
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where 

AK= [Ae,, . . . . Ae,; zlk’, . . . . zjk’; 6~\~‘, . . . . Gzjk’J. (21) 

(vi) Increment the iteration counter k and go to (i) for the next iteration. 

Note that in step (ii), the matrix lAii - ilk)/ is nearly singular whenever a trial 
eigenvalue nearly coincides with a root Aii of A,. In this case the ith component 
of 6xJk) cannot be reliably determined, and we set it to zero whenever lAii - ij”‘l 
is less than a preset cutoff value (taken to be of the order of the spacing between 
roots of AL). This plays a role similar to the introduction of shifts in other methods. 
Actually, in our method the ith component of 6xi (k) is set to zero whenever ibm, 
since the ith expansion vector e; is included in the basis exactly anyway. Normally 
A will have been arranged so that its diagonal elements increase down the diagonal, 
in order that the first m basis vectors included exactly in step (iv) will be those most 
likely to have the largest projection on the desired eigenvectors. In this case, if m 
is chosen large enough so that A,,,,,, > Ljk’ the lAii - Ay)J cutoff will never be , 
encountered. Usually m 31 is sufficient to ensure this, and the method seems to 
work best in this case (see Section 4). 

As mentioned in Section 2, the program actually combines steps (ii) and (iii), so 
that the total operation count for these two steps is n2f instead of +$n’Z. Moreover, 
the matrix elements of A are required only a column at a time within the outer 
loop; this is critical in order to minimise I/O costs when the matrix is too large to 
lit in central memory. In the latter case, the program provides a choice of two 
modes of operation. In the first, the matrix A is precomputed and stored so that the 
program pages through the matrix once per iteration. In the second mode, the 
matrix is not precomputed but rather its entries are computed as required through 
a user supplied routine MATROW. This routine, upon invocation, computes a 
desired row (or equivalently, a column) of the matrix A. Again, MATROW is only 
called once per row per iteration. The best choice between these options depends 
on whether it is less expensive to recompute the matrix or to page it from disk once. 

4. RESULTS 

A test matrix of order 1459 (corresponding to a Fourier representation of the 
quantum-mechanical Schrodinger equation for an electron in a crystal) was 
generated in order to study the behavior of the present algorithm. It was desired to 
obtain converged solutions to the lowest 48 eigenvalues and corresponding eigen- 
vectors. The convergence was monitored by computing the largest norm from 
among the residual vectors obtained from this set at each iteration. The computa- 
tions were initialized by diagonalizing a leading submatrix of order 510 for each test 
case. All timings are reported in cpu seconds on the Cyber 205. 

Figure 1 shows that the Gauss-Seidel update leads to a faster convergence. In 
order for the error to drop to a value below 5 x low3 only six iterations were 
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0 5 10 15 

number 01 iterations 

FIG. 1. The elTect of the choice of iteration scheme (Gauss-Seidel versus Newton-Jacobi) on con- 
vergence. The residual error plotted is the largest from among the lowest 48 eigenvalue-eigenvector 
pairs. The blocksize is fixed at I = 60 and the number of exactly included basis vectors is fixed at 111 = 65. 
The Cyber 205 execution times per iteration were 4.2 and 4.9 s for the Newton-Jacobi and Gauss-Seidel 
methods, respectively. 

required with the Gauss-Seidel update; the corresponding figure for the Jacobi 
update was 12 iterations. This difference in performance between these two schemes 
becomes sharper when the convergence criterion is decreased. For meaningful 
comparison, the cpu time taken in order to reduce the error to a constant value 
must also be considered. In the Gauss-Seidel case this was 29.4 s while in the Jacobi 
case it was 50.4 s. 

In Fig. 2, we show the effect of varying the block size, i.e., the quantity 1 in Sec- 
tion 3, on the convergence. Again, we see that using a larger basis leads to a faster 
convergence. However, there appears to be a limit to the increase in performance 
that is attainable in this fashion since the separation between the convergence 
curves in increasing I from 66 to 72 is not as great as that obtained in increasing 
I from 54 to 60. Since increasing the magnitude of 1 also increases the cpu time, 
there is an optimal choice for this quantity. As a rule of thumb, we suggest choosing 
1 about 25% larger than the number of desired eigenvectors. 

The effect of including the m original basis vectors exactly to the approximating 
subspace in each iteration is considered in Fig. 3. Again a pronounced increase in 
the rate of convergence can be seen, especially in the early stages. Just as for the 
choice of the block size 1, there is an optimal value of m that achieves a balance 
between faster convergence and the increased time per iteration. We have found 
that m z 1 is typically a good choice. 

For the test matrix studied, the choices I = 60 and m = 65 used in Fig. 1 were 
nearly optimum. The total diagonalization time using optimally vectorized standard 
techniques for a matrix of this size is approximately 240 s, so that an order-of- 
magnitude speedup was realized for this case. As with other iterative methods, the 
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10-41 ’ 1 ’ j ’ 1 
0 5 10 t5 

number of iterations 

FIG. 2. The effect on convergence of varying the block size I (i.e., 1 is the number of iterated vectors). 
The residual error is the largest from among the lowest 48 eigenvalue-eigenvector pairs. The number rn 
of exactly included basis vectors is fixed at 65. The Cyber 205 execution times per iteration were 4.3, 4.9, 
5.6, and 6.2 s for the cases I= 54, 60, 66, and 72, respectively. 

speedup is even more dramatic if the diagonalization step is part of an outer 
iterative loop as often occurs in “self-consistent” or “mean-field” calculations. In 
this case, the output eigenvectors from the previous pass through the outer loop 
provide good starting vectors for the algorithm so that, especially in the late stages 
of such calculations, only one or two update iterations may be needed to obtain 
convergence. 

10-l : 

k 
5 
2 10-Z : 

4 
E 

10-Z : 

IO”1 ’ a ’ 3 ’ c I 
0 5 10 15 

number of iterations 

FIG. 3. The effect on convergence of varying the number M of exactly included low-order expansion 
basis vectors. The blocksize I is fixed at 60. The Cyber 205 execution times per iteration were 4.1, 4.4, 
4.9, 5.7, and 7.5 s for the cases m =0, 25, 65, 110, and 177, respectively. 
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5. SUMMARY 

The method described here is intended to represent a reasonable compromise 
between simplicity, efficiency, and robustness. It is simpler than some of the pre- 
vious algorithms because the subspace size does not increase with iteration number. 
This also allows us to avoid difficulties with overcomplete subspaces that sometimes 
occur in these other algorithms after several iterations. In addition, it is quite 
efficient in the sense that twofold or greater reductions in the residuals per iteration 
are not hard to obtain, even for matrices larger than the one tested above. The 
method has no difficulty in handling degenerate eigenvalues and can handle 
matrices that exceed the physical memory size without serious performance 
degradation. It is now being used routinely to diagonalize matrices of order 3000 
and larger in a production environment. 
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